工程档案——迪拜哈利法塔
迪拜哈利法塔,总高828m,混凝土用量33万m3,总用钢量10.4万t,玻璃面积14.2万m2。2004年9月21日开始动工,2010年1月4日竣工启用。
创新技术——设计和施工的突破
迪拜哈利法塔828m的高度已超越了纯钢结构高层建筑的使用范围,但又不同于内部混凝土外围钢结构的传统模式,在体系上有所突破。由于超高,设计上着重解决抗风设计和竖向压缩、徐变收缩等竖向变形问题;施工上将C80混凝土一次泵送到606m的高度,创造了一个新的奇迹。
迪拜哈利法塔是目前世界上最高的建筑,总高度828 m,凝土结构高度601m,总建筑面积52.67万 m2,塔楼建筑面积34.4万 m2 。基础底面埋深 -30m,桩尖深度-70m;混凝土用量 33万 m3,总用钢量10.4万t (高强钢筋6.5万t,型钢3.9万t)。工程总造价15亿美元。
哈利法塔的建筑理念是“沙漠之花——Desert Flower”,平面是三瓣对称盛开的花朵(见图1),立面通过21个逐渐升高的退台形成螺旋线,整个建筑物像含苞待放的鲜花。这朵鲜花在沙漠耀眼的阳光下,幕墙与蓝天一色,发出熠熠光辉。
图1 三瓣盛开的沙漠之花
哈利法塔是一座综合性建筑,37层以下是阿玛尼高级酒店;45~108层是高级公寓,共700套,78层是世界最高的游泳池;109~162层为写字楼;124层为世界最高的观光层,透过幕墙的玻璃可以看到80km外的伊朗;158层是世界最高的清真寺;162~206层为传播、电信、设备用楼层;顶部70m 是钢桅杆。
结构设计创新
结构体系。全钢结构优于混凝土结构,适合于超高层建筑,这是上世纪六七十年代的普遍共识,并建造了大量300m以上的钢结构高层建筑。到八九十年代,纯钢结构已经不能满足建筑高度进一步升高的要求,其原因在于钢结构侧向刚度的提升难以跟上高度的迅速增长,此后钢筋混凝土核心筒加外围钢结构就成为超高层建筑的基本形式。而哈利法塔做了前所未有的重大突破,采用了下部混凝土结构、上部钢结构的全新结构体系。即-30~601m为钢筋混凝土剪力墙体系,601~828m为钢结构,其中601~760m采用带斜撑的钢框架。
采用三叉形平面可以取得较大的侧向刚度,降低风荷载,有利于超高层建筑抗风设计,同时对称的平面可以保持平面形状简单,施工方便。
整个抗侧力体系是一个竖向带扶壁的核心筒,六边形的核心筒居中;每一翼的纵向走廊墙形成核心筒的扶壁,共6道;横向分户墙作为纵墙的加劲肋;此外,每翼的端部还有4根独立的端柱。这样一来,抗侧力结构形成空间整体受力,具有良好的侧向刚度和抗扭刚度(见图2)。
图2 抗侧力结构布置
中心筒的抗扭作用可以模拟为一个封闭的空心轴。这个轴由三个翼上的6道纵墙扶壁而大大加强;而走廊纵墙又被分户横墙加强。整个建筑就像一根刚度极大的竖向梁,抵抗风和地震产生的剪力和弯矩(见图3)。由于加强层的协调,端部柱子也参加抗侧力工作。
图3 整座建筑如同一根竖向梁
竖向形状按建筑设计逐步退台,剪力墙在退台楼层处切断,端部柱向内移。分段步步切断可以使墙、柱的荷载平顺逐渐变化,同时也避免了墙、柱截面突然变化给施工带来的困难。退台要形成优美的塔身宽度变化曲线,而且要与风力的变化相适应。
建筑设计在竖向布置了7个设备层兼避难层,每个设备层占2~3个标准层。利用其中的5个设备层做成结构加强层(见图4)。加强层设置全高的外伸剪力墙作为刚性大梁,使得端部柱的轴力形成大力矩抵抗侧向力的倾覆力矩,同时刚性大梁调整了各墙、柱的竖向变形,使得其轴向应力更均匀,降低了各构件徐变变形差。
图4 结构的5个加强层
混凝土结构设计。按美国规范 ACI 318-02 进行。127层以下混凝土强度等级C80,127层以上C60。C80混凝土90d弹性模量E=43800N/mm2。采用硅酸盐水泥,加粉煤灰。
调整构件截面尺寸,以减少各构件收缩和徐变变形差,原则上使端柱和剪力墙在自重作用下的应力相近。由于柱子和薄剪力墙的收缩较大,所以端柱的厚度取与内墙相同,即600mm。设计时尽量考虑构件的体积与表面积的比值接近,使各构件的收缩速度接近,减少收缩变形差。
在立面内收处,钢筋混凝土连梁要传递竖向荷载(包括徐变和收缩的效应),并联系剪力墙肢以承受侧向荷载。连梁按ACI 318-02附录A设计,计算图形为交叉斜杆,这种设计方法可使连梁高度降低。
楼层数量多,压低层高意义大,标准层层高3.2m,采用无梁楼板,板厚300mm。
钢结构设计。按美国钢结构协会AISC《建筑钢结构荷载抗力分项系数设计规范》进行设计。601m以上是带交叉斜撑的钢框架,以承受重力、风力和地震作用。钢框架逐步退台,从第18级的核心筒六边形到第29级的小三角形,最后只剩直径为1200mm的桅杆。这根桅杆是为了保持建筑高度世界第一专门设计的,可以从下面接长,不断顶升,预留了200m的上升高度。所有外露的钢结构都包铝板作为装饰。
结构分析。采用ETABS 8.4版,考虑了重力荷载(包括P-D 二阶效应)、风、地震因素。建立三维分析模型,包括钢筋混凝土墙、连梁、板、柱、顶部钢结构、筏板和桩。
分析模型共73500个壳元、75000个节点。分析参数为:风力50年一遇,55m/s,风压按风洞试验取值;地震:按美国标准UBC 97 的2a 区,地震系数 z=0.15,相当于我国8度设防;温度:气温变化范围 2~54℃。分析结果表明,50年一遇的风力,828m的顶部结构水平位移为1450 mm,办公层顶部(162层)为1250mm,公寓层顶部(108层)为450mm,位移值低于通用标准,符合设计要求。内力分析表明,钢筋混凝土塔楼部分地震力不起控制作用,但裙房和顶部钢结构处,地震内力对设计有作用。
通常采用线性有限元分析竖向荷载下的墙、柱内力和位移,但因哈利法塔高度的原因,这种分析方法会偏离真实情况,最后采用了GL 2000(2004)模型,既考虑了钢筋的影响,也包括施工过程。
施工过程分析。全过程分15个阶段,采用三维模型进行分析,同时也考虑了收缩和徐变。每个模型都代表施工过程的一个时间点,施加当时所增加的新荷载。分析还延续到施工结束后50年。
补偿技术。施工过程中两个方向的平移应根据计算结果予以补偿、校正;竖向压缩则每层的层高应增加一个补偿值。中心筒在施工过程中会产生偏心,偏心调整应每层进行,可以通过纠正重力荷载产生的侧移(弹性位移、基础底板沉降差、徐变、收缩)来补偿。
竖向缩短。结构竖向压缩每层平均为 4mm,整座建筑的顶点为 650mm,通过每层标高的调整来补偿。
受收缩和徐变的影响,钢筋混凝土竖向构件的内力会在钢筋和混凝土之间重新分配。由于要求两者应变相同,混凝土分担的内力会逐渐减少,钢筋的内力会相应增加。哈利法塔第135层,墙、柱中钢筋与混凝土的内力比会从15%/85%变为30%/70%。
基础设计采用摩擦桩加筏板联合基础(见图5)。该工程地基为胶结的钙质土和含砾石的钙质土。天然地基土与混凝土桩的表面极限摩擦力为250~350kPa。194根现场灌注桩,长度约43m,直径1500mm,设计承载力为3000kN。现场进行压桩试验,最大压力为6000kN,桩尖深度 -70m。迪拜地下水具有腐蚀性,氯离子浓度4.5%,硫0.6%,因此桩采用C60混凝土,加25%粉煤灰,7%硅粉,水灰比0.32,坍落度675mm。
图5 桩筏联合基础
筏板厚度3.75m,采用C50自密实混凝土,加40%粉煤灰,水灰比0.34,现场进行坍落度和流动性试验。钢筋间距双向300mm,但在每一个方向每隔10根钢筋取消1根钢筋,形成600mm×600mm的无钢筋洞口,便于浇筑混凝土。为减轻地下水的腐蚀作用,底板铺设了一层钛丝编织的阴极保护网。
筏板连同桩、周边土体进行了三维有限元分析,分析结果为基础长期沉降为80mm,施工到135层时沉降30mm,工程完工后,实测沉降为60mm。
施工技术创新
混凝土配合比。竖向结构混凝土要求10h强度达到10MPa以保证混凝土施工能正常循环,最终强度达到80MPa(127层以下)和60MPa(127层以上),C80混凝土的弹性模量为44000MPa。此外,混凝土还要有好的和易性,有适合于600m泵送高度的坍落度。由于迪拜冬天冷夏天炎热,不同季节要调节混凝土的强度增长率及和易性损失值。
混凝土超高泵送。哈利法塔创造了混凝土单级泵送606m的世界纪录。达到这个空前的高度,最大困难是混凝土的配合比设计,采用了4种不同的配比以便能用较小的压力把混凝土送到不同的高度。泵送混凝土含13%粉煤灰、10%的硅粉,集料最大粒径20mm,自密实,坍落度600mm。采用了3台世界上最大的混凝土泵,压力可达350bar,配套直径150mm的高压输送管(见图6)。
图6 混凝土泵
模板和混凝土浇筑。整个基础筏板混凝土接近45000m3,按中心部分和三个翼板分成4段浇筑,每段相隔24h。
上部结构的墙体用自升式模板系统施工(见图7),端柱则采用钢模施工,无梁楼板用压型钢板作为模板。首先浇筑中心筒及其周边楼板,然后浇筑翼墙及相关楼板,最后是端柱和附近楼板(见图8)。
图7 自升式模板系统
图8 墙体混凝土浇筑
施工监测。哈利法塔高达828m,施工测量控制是突出问题,现有测量手段无法满足要求,采用全球卫星定位系统GPS控制施工全过程的精度。
迪拜哈利法塔以828m的超高度、52万m2的巨大建筑面积,给我们提供了丰富的设计和施工经验。随着国内632m的上海中心、680m的深圳平安保险大厦等一批600m以上建筑的即将竣工,我国的高层建筑技术将会提高到一个新的水平。
(来源:施工技术 文/中国建筑科学研究院 赵西安)